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It is shown that the latest estimates of the critical exponents obtained 
by different methods can be represented as fractions: N = 1/32 and ~ = 
17/27. New formulas are given which reproduce the values of the critical 
exponents for systems with various dimensionalities and numbers of order 
parameters. 

In the theory of critical phenomena normally six critical exponents are used: ~, the 
exponent of the specific heat at constant volume c v (the specific heat c H in zero magnetic 
field H = 0); 6, the exponent of the coexistence curve (magnetization); 7 , the exponent of 
the isothermal compressibility (susceptibility); 6, the exponent in the dependence of the 
pressure on density on the critical isotherm (dependence of the magnetic field intensity 
on the magnetization); v, the exponent for the correlation range; q , the exponent of the cor- 
relation function. The magnetic analogs of the thermodynamic quantities for a liquid-gas 
system are given in parentheses. 

The critical exponents are related to each other by the equations [I]: 

~ §  ( i )  

v = ~(8--i), ( 2 )  

~z = 2 - - d ~ ,  (3) 

v = (2--n)~, (4) 
where d is the dimensionality of the system. Therefore, if two of the critical exponents 
are known, the relations (i) through (4) can be used to calculate the others. 

Up until 1972, the only source of theoretical information on the values of the critical 
exponents of pure materials was the analysis of the series expansions of the lattice gas 
model (three-dimensional Ising model) [2]. For different lattices (simple cubic, bcc, fcc, 
and diamond) from 15 to 40 terms are known for the high and low-temperature series for the 
specific heat, magnetization, susceptibility, and spherical moments of the correlation 
function. The critical exponent ~, $, 7, ~ can be determined from these series. 

The calculation of the coefficients of the series for the Ising model is a very compli- 
cated combinatorial problem and the results obtained pushed the limits of the computers in 
1972 [2-8]. 

The method of obtaining the critical exponents from analysis of the series expansions 
is itself simple [9, i0]. Because the asymptotic behavior of a quantity given by a power 
series 

f (x) = ~ .  a~x"; 
n 

is determined by a function of the form 

f (x) = E (1 - -  y x ) - L  

the n-th coefficient of the series is given by the expression 

an = E ( n + 8 - - 1 )  ' 

(5) 

(6) 

(7) 
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where y = Xc -z is the radius of convergence of the series; [(n+E-l)/n] = [s(e+l)...(e+n-l)/ 
n[] is the binomial coefficient. 

The expansion parameter x in the Ising model is usually the variable v = th(J/kT) for 
T > Tc and u = exp(-4J/kT) for T ! Tc, where J is the interaction parameter for nearest: 
neighbors and k is the Boltzmann constant. 

The ratio of successive coefficients of the series (5) can be written as 

a~ ( e - - l )  ( 8 )  r~ - - -  1 § y. 
~n-1 

The l i m i t  o f  t h e  s e q u e n c e  {rn} as  1 /n  ~ 0 d e t e r m i n e s  t h e  r a d i u s  o f  c o n v e r g e n c e  y o f  t h e  
s e r i e s  ( t h e  c r i t i c a l  t e m p e r a t u r e ) .  E x p a n d i n g  in  y ,  we o b t a i n  f rom (8 )  a s e q u e n c e  o f  e s t i -  
m a t e s  o f  t h e  c r i t i c a l  e x p o n e n t  

e~ = n(r~y - 1 -  I) § I. ( 9 )  

Having the values y and ~, we obtain from (7) a sequence of estimates of the critical ampli- 
tude 

Usually the value of ~n depends on the number of terms in the series. Therefore it is 
necessary to extrapolate the sequence (en} to an infinite number of terms of the series 

= 1 _ _ _  [nd2_1)  -7  (n -   t71' ]. ( i 1 ) 
m 

Here  m i s  t h e  o r d e r  o f  t h e  e x t r a p o l a t i o n ,  and m = 0 c o r r e s p o n d s  t o  t h e  o r i g i n a l  s e q u e n c e  

{en}. 

The logarithmic derivative of the function f(x) is 

r (x) a lnf(x___J = = b xn. ( 1 2 )  
dx 1 - - y x  

From (7) and (12) we obtain a sequence of estimates of the critical exponent by the loga- 
rithmic derivative method 

en = bn/y n+l. (13) 

The Pad~ approximant of the function F(x) is a ratio of polynomials 
N+M+; N M 

T h e r e  a r e  d i f f e r e n t  m e t hods  o f  d e t e r m i n i n g  t h e  c r i t i c a l  e x p o n e n t s  u s i n g  t h e  Pad4 a p -  
p r o x i m a n t  m e t h o d .  Fo r  e x a m p l e ,  one can  fo rm t h e  Pad4 a p p r o x i m a n t  t o  t h e  s e r i e s  

F(x) = ( y - l - - x )  d l n f ( x )  ~ b i x  ~ (15)  
dx 

and obtain a table of values of the critical exponent e by evaluating the approximants with 
-I x=y 

The ratio and logarithmic derivative methods can be applied only to series whose co- 
efficients form an ordered sequence of the same sign (high-temperature series for all lat- 
tices and low-temperature series for the diamond lattice). The Pad4 approximant method can 
also be used for series whose coefficients randomly oscillate in sign and magnitude (low- 
temperature series for simple cubic, fcc, and bcc lattices). 

The values of the critical exponents of the three-dimensional Ising model obtained with 
these methods are, to a very good approximation 

~ = I / 8 ;  ~ = 5 / 1 6 ;  7 = 5 / 4 .  (16)  

Application of these methods to the series for the two-dimensional Ising model gives results 
which are practically identical to the exact values: a = 0 (logarithmic singularity); ~ = 
1/8; y = 7/4; 6 = 15; v = i; ~ = 1/4. 

This gives confidence that the values of the critical exponents (16) can be identified 
with the exact values for the lattice gas model. But there are two discrepancies which 
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should be noted. The critical exponents from the low-temperature series expansion of the 
susceptibility 7' = 1.26-1.31 [ii, 12] and are higher than the assumed value y = 1.25; and 
the values of the correlation range exponent 9 = 0.636-0.642 [13-15] are above the value 
v = 0.625 which follows from the relations (3). 

A new stage in the calculation of the critical exponents began with the work of Wilson 
[16], in which the criticalexponents were determined by the renormalization group method 
for an n-component system to within terms of order e 2. Here n is the number of components 
of the order parameter, and ~ = 4 - d is the expansion parameter. Detailed discussions of 
the renormalization group method are given in [i, 17, 18]. 

The work of Wilson not only provided a new direction for the calculation of the critical 
exponents, but also gave support to the hypothesis of the universality of critical pheno- 
mena; i.e., the values of the critical exponents do not depend on the nature of the material 
or the type of physical system, but depend only on the dimensionality d and the number of 
components n of the order parameter of the system. A pure material belongs to the class of 
three-dimensional systems d = 3 with a single-component order parameter n = i. For this 
type of system Wilson's solution gives the following values of the critical exponents: 

= 0,077;  ~ = 0,340;  ~ = 1,244; ~ = 0,626. ( 1 7 )  

The significant discrepancy between the Wilson values and the values (16) indicated that 
further work was necessary on the determination of the critical exponents. 

In later papers a different variant of the renormalization group was used, based on the 
field-theoretic approach to the problem of phase transitions. 

The following values were obtained in [19, 20] 

= 0,132; ~ = 0,322; ~ = 1,224, ( 1 8 )  

a n d  i n  [ 2 1 ]  

= 0,118; ~ = 0,320; ? = 1,242. ( 1 9 )  

The most reliable values of the critical exponents using the renormalization group were 
obtained in [22] 

= 0,1132; ~ = 0,3243;  7 = 1,238 ( 2 0 )  

and in [23, 24] 

= 0,110; ~ = 0,325; y = 1,2402. ( 2 1 )  

Therefore the latest values of the critical exponents using the renormalization group (20) 
and (21) are consistent with one another, but differ by about 0.01 from the values (16) 
obtained from series expansions of the three-dimensional Ising model. This difference shook 
the confidence in the accuracy of the values of the critical exponents (16) and led to a 
series of new papers on the determination of the critical exponents from series expansions 

of the Ising model. 

As is obvious from (9), (13), and (15), the values of the critical exponents from the 
series expansions depend on the choice of the radius of convergence of the series y. If 
the error in y is ~y, the error in en by the ratio method is 

A ~ n A y / y  ' ( 2 2 )  

and extrapolation of the sequence of estimates to I/n = 0 leads to an increase rather than 
a decrease in the error of the critical exponent. Linear extrapolation of the sequence of 
estimates (9) gives the additional error 

As~ 1) ,~  (2n - -  1) Ay , ( 2 3 )  
Y 

and the second-order extrapolant differs from the extrapolation with the exact value of 
the critical temperature by the quantity 

Ay (24) As~ ) ~ 3(n--  I) 
Y 

In [25] the critical exponents a and ~ were obtained from analysis of the high-temper- 
ature series expansions for simple cubic, fcc, and bcc lattices, independently of the choice 
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of the critical temperature. The essence of the method is that the function F(x) given by 
the series 

~ aw n F ( x )  = c n x  n = - -  x , 

n lZ b l z  

where a n and b n are the series expansion coefficients of the functions 

( 2 5 )  

[1 (x) =: E1 (I - -  yx) -e* = ~ a,S*; ( 2 6 )  

[2 (x) = E2 (1 - -  yx) - ~  -- ~.~ bnx n, ( 2 7 )  
tZ 

has the asymptotic form 

F (x) .--. ( I  - -  ~ - < ~ - ~ + ~  ~, (28) 

and the radius of convergence of the series (25) is y = i. 

The logarithmic derivative of any arbitrary function can serve as the function fi(x). 
In this case E 2 = 1 and the series (25) gives a value of the critical exponent E l indepen- 
dent of the critical temperature. 

The values of the critical exponents obtained in [25] are below those quoted earlier: 
= 1/8 and y = 5/4. The most ordered sequence of estimates is obtained for an fcc lattice, 

where extrapolation gives ~ = 0.iii • 0.001; ~ = 1.244 • 

In [26] high-temperature series expansions were analyzed using a previously determined 
critical temperature. The results ~ = 0.ii0 and ~ = 1.245 are similar to the values obtained 
in [25], and the value v = 0.638 was obtained for the correlation range exponent. 

Hence if we remove the error associated with an error in the critical temperature, the 
estimates of the critical exponents from series expansions converge on the values obtained 
using the renormalization group, but there remains a discrepancy of ~0.005 for y and ~ 0.01 
for v. 

In [27] the effect of a correction term to the asymptotic dependence on the critical ex- 
ponents obtained from series expansions was considered. For a function of the form 

[(x)  = E(1 - -  y.~)-e [1 + e(1 - -b ,x)  ~ ] = ~.a,~x'* ( 2 9 )  
n 

the n-th coefficient of a power series expansion is given by the expression 

From (30) we obtain an equation for the sequence of critical exponents obtained by the ratio 
method 

en=e--A e%~_I , (31) 
1 § e%~-1 

where 

e - - A  e - - A + 1  e - - A + n - - !  
~ = - . -  (32) 

e s +  t ~ - k n - - 1  

C o m p a r i n g  ( 3 1 )  f o r  a n a n d  Sn_ l ,  we o b t a i n  a f i n a l  e x p r e s s i o n  f o r  t h e  c r i t i c a l  e x p o n e n t  
by the ratio method and with the inclusion of the first correction term to the asymptotic 
dependence 

= e~ - -  (-e-n-1---e~) ( ~ - - A  + n -  2) ( 3 3 )  
A + e ~ - i -  e 

where gn and En_ I are determined according to (9). 

When there is a correction term to the asymptotic dependence, the convergence of the se- 
quence of estimates of the critical exponent to the exact value is very slow. Linear extra- 
polation of the sequence (31) gives 

~(1)_e~(e n-e)(l --A), (34) 
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TABLE i. Recent Theoretical Estimates of the Critical Expo- 

nents for a Three-Dimensional System with a One-Component 
Order Parameter 

SourceIY.rl ]0 0 v 

Renormalization gr. 
Renormalization gr. 
Series expansions 
Series expansions 
Renormalization gr. 

Average value 

Mean square deviat. 

Scatter of the es- 
timates g _ gmin max 

[22] 
[23] 
[271 
I311 
[34] 

1976 
1977 
1980 
1982 
1984 

0,113210,324~ 
0,110 10,325. 
o,112 ]0,324 
0,113 10,824~ o,1118]o,824  
3,112010,324~ 

! 
3,0012/0,000~ 

),0032~,001 

1,238 
1,2402 
1,240 
1,238 
1,2390 

1,2390 

0,0010 

0,0022 

4,818 
4,816. 
4,827 
4,815 
14,817 

4,818 

0,005 

0,012i 

0,6289 
0,6300 
0,6293 
0,629 
0,6294 

0,B293 

0,0005 

0,00!1 

0,0313 
0,0315 
0,0297 
0,0318 
0,0315 

0,0312 

O, 0007 

0,001! 

and the equation for the second-order extrapolants has the form 

( 8('} + 8'~-~ ){1 A). (35)  8~ 2 1 -  8 ~ 2 8 - -  

The analysis in [27] of the high-temperature series expansions for fcc-lattices with the 
inclusion of the correction term to the asymptotic dependence gives the results a = 0.112 -+ 
0.002 and 7 = 1.240 _+0.002, and these values agree with the critical exponents obtained using 
the renormalization group method [22-24]. 

In [28] the high-temperature series expansions of the correlation function and suscep- 
tibility of bcc lattices were extended up to 21 terms and new values were obtained for the 

critical exponents: 7 = 1.239 _+0.002 and v = 0.631 _+0.003. 

The high-temperature series expansions for bcc lattices with 21 terms have been analyzed 
by many authors [29-32]. In [31] the first correction term to the asymptotic dependence 
was taken into account and the following values of the critical exponents were obtained: y = 

1.238 _+ 0.003; ~ = 0.629 _+0.002. 

In [33] the high-temperature series expansion of the correlation function of an fcc lat- 
tice with 13 terms was analyzed and here too good agreement with the results of [22-24] was 

obtained: ~ = 0.630 _+0.001. 

In [34] the renormalization group calculation for a simple-cubic lattice in the Ising 
model was done using the Monte Carlo method and the critical exponents ~ = 0.6294 and q = 

0.0315 were obtained. 

Hence the latest estimates of the critical exponents, obtained with different methods, 
are consistent among themselves, as can be seen from Table 1. The scatter of the estimates 
does not exceed the computational errors cited by the authors of _+0.002 to _+0.003, and the 
mean-square deviation ranges from 0.0005 to 0.0012 (for the exponent 6 the deviation is 

three times as large, in view of Eq. (2)). 

It would be difficult to believe that the excellent agreement of five independent sets 
of estimates of the critical exponents, obtained by different methods and on different mo- 
dels is accidental, and that the estimates have a systematic error. Therefore we can state 
that the critical exponents, which are the fundamental constants of the theory of critical 
phenomena, are known at present with an accuracy to the third decimal place: 

,q = 1/32; v = 17/27; ~ = 1/9; ~ = 187/576; y = 119/96; 6 = 53/11. (36.) 

We also note that the values obtained in [23, 24] for the critical exponents of three- 
dimensional systems with a two-component order parameter n = 2 (N = 0.033 _+0.004 and ~ = 
0.669 -+0.002) and for three-dimensional systems with a three-component order parameter n = 3 
(~ = 0.033 -+ 0.004 and ~ = 0.705 _+0.003) are close to the fractions N = 1/32 and ~ = 2/3 
for n = 2 and q = 1/32 and ~ = 19/27 for n = 3. The critical exponents N and ~ for systems 
with dimensionalities d = 2, 3, 4 and number of order parameters n = i, 2, 3 can be obtained 

from the proposed formulas: 

4 - - d  2 ( d - - 2 ) ( d - - 4 ) ( 2 - - n )  (37)  
71 . . . . .  ; v =  + 

d s + d 2 J 4 d d n 
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